

Louisville Metro Air Pollution Control District 701 West Ormsby Avenue, Suite 303 Louisville, Kentucky 40203-3137

31 July 2018

Federally Enforceable District Origin Operating Permit

		Staten	nent of B	asis	o per umg r e	· · · · · · · · · · · · · · · · · · ·
Source	: Advance Ready Plant #5	Mix Concrete In	c. Owner	r: A	dvance Ready N	Mix Concrete Inc.
	6801 Enterprise	Drive		16	51 North Shelby	Street
	Louisville, KY				ouisville, KY 40	
	,				,	
Applic	eation Documents:	See Table 8 in sect	ion I			
Public	Comment Date:	06/30/2018				
Permit	ting Engineer:	Martin J Hazelett		Permit	Number:	O-1246-18-F
Plant I	-	SIC:	3273		NAICS:	327320
	,					
Introdu	uction:					
below is all apple. This is lists.	major source threshold icable requirements. a standard FEDOOP on County is classifi	d levels and to prove	ide method is action als	s of descriptions of the solution of the solut	etermining conting ates the permit for the Pb), nitrogen di	ormat and equipment oxide (NO ₂), carbon microns (PM ₁₀); and
unclass		standard for particu	•			interons (FM $_{10}$), and s (PM $_{2.5}$) and partial
		Permit Ap	plication '	Туре:		
	Initial issuance	□ Mi	vision ministrative nor mificant		⊠ Per	mit renewal
		Complia	nce Sumn	nary		
	Compliance certification	_			Compliance sche	
	Source is out of complia	nce		\boxtimes	Source is operati	ng in compliance

I. Source Information

- **1. Product Description:** Advance Ready Mix Plant #5 is a dry batch ready mix concrete plant.
- 2. **Process Description:** The dry components of concrete (cement, fly ash (cement supplement), sand, and aggregate) are measured and loaded with water into concrete ready mix/transit trucks and transported to offsite delivery locations.
- **3. Site Determination:** There are no other facilities that are contiguous or adjacent, but there are three (3) other ready mix plants under common control. The other three plants under common control are listed below:

Advance Ready Mix – Plant #1, 820 E. Water St., Louisville KY 40202 Advance Ready Mix – Plant #2, 201 Clay St., Louisville, KY 40402 Advance Ready Mix – Plant #3, 3098 Element Lane, Louisville, KY 40299

4. Emission Unit Summary:

Emission Unit	Equipment Description	
U1	Ready Mix Concrete Batch Plant (Truck Mix)	
IA1	Storage Tanks	
IA2	Water Heater	

5. Fugitive Sources: The fugitive sources that were identified by the source are uncontrolled portions of the Erie Strayer ready-mix unit.

6. Permit Revisions:

Permit No.	Public Notice Date	Issue Date	Change Type	Description/Scope
27840-13-F	3/2/2013	5/18/2013	Initial	Initial Permit Issuance
O-1246-15-F	6/23/2015	7/24/2015		$PM_{10} < 25$ tn/yr to be FEDOOP STAR Exempt
				Removed TAC requirements
			Admin	Deleted non-applicable Permit Shield, Off-Permit Document, and Alternative Operating Scenario references.
				Added controlled and uncontrolled emission factors to clarify how to calculate emissions.
O-1246-18-F	6/30/2018	7/31/2018	Renewal	Scheduled permit renewal

Permit No.	Public Notice Date	Issue Date	Change Type	Description/Scope
			Admin	Updated permit format, removed parts washer from permit (Insignificant activity), added 2.8 MMBtu/hr (indirect fired heat exchanger)- water heater, and batch admixture storage totes.

7. Construction Permit History:

Permit No.	Effective Date	Description
42-97-C	02/24/1997	Install Erie Strayer concrete transit mix batch plant
189-03-C	04/29/2003	Install Dust Collector C & W Model CP-35-219

8. Permit Renewal-Related Documents

Document Number	Date Received	Description
18299	3/18/2008	FEDOOP Permit application
18296	11/29/2010	Application AP-2608 Solvent Metal cleaning
52844	1/2/2013	Application AP-100A change of ownership
59011	09/09/2013	Application AP-100A STAR expempt
90917	03/01/2018	Applications AP-100A AP-100B AP-100C AP-100D AP-100E AP-100H AP-10 0J AP-100K
91041	03/05/2018	Request for certificate of authorization/existence
91082	03/07/2018	Received certificate of authorization/existence
91256	03/21/2018	Requested documentation from site visit discovery
91306	03/27/2018	Follow up notes to the Advance Ready Mix Plant 5 (1246) site visit March 12, request updated AP 100B
91307	03/27/2018	Response: Follow up notes to the Advance Ready Mix Plant 5 (1246) site visit March 12, request updated AP 100B
91330	03/28/2018	Response: Follow up notes to the Advance Ready Mix Plant 5 (1246) site visit March 12, request updated AP 100B

Document Number	Date Received	Description	
91842	05/02/2018	Response: Additional information for water heater	
91843	05/02/2018	Response: Advance Plant 5 water heater specs	

9. Emission Summary:

Pollutant	District Calculated Actual Emissions (ton/yr) 2011 Data	Pollutant that triggered Major Source Status (based on PTE)
СО	0	No
NO _x	0	No
SO ₂	0	No
PM_{10}	3.49	Yes
VOC	0.0019	No
Total HAPs	0	No
Single HAP	0	No

10.	Applicable	Requiremen	ts

40 CFR 60	\boxtimes	SIP	40 CFR 63
40 CFR 61	\boxtimes	District Origin	Other

- **11. Referenced MACT Federal Regulations:** There are no MACT federal regulations for this source.
- **12. Referenced non-MACT Federal Regulations**: There are no non-MACT federal regulations for this source.

II. Regulatory Analysis

1. Acid Rain Requirements: Advance Ready Mix is not subject to the Acid Rain Program.

- 2. Stratospheric Ozone Protection Requirements: Title VI of the CAAA regulates ozone depleting substances and requires a phase-out of their use. This rule applies to any facility that manufactures, sells, distributes, or otherwise uses any of the listed chemicals. Advance Ready Mix Plant #5 does not manufacture, sell, or distribute any of the listed chemicals. The source's use of listed chemicals is that in fire extinguishers, chillers, air conditioners and other HVAC equipment.
- **3. Prevention of Accidental Releases 112(r):** Advance Ready Mix Plant #5 does not manufacture, process, use, store, or otherwise handle one or more of the regulated substances listed in 40 CFR Part 68, Subpart F, and District Regulation 5.15, *Chemical Accident Prevention Provisions*, in a quantity in excess of the corresponding specified threshold amount.

4. Basis of Regulation Applicability

a. **Plantwide**

Advance Ready Mix - Plant #5 is a potential major source for the pollutant PM₁₀. Regulation 2.17 – Federally Enforceable District Origin Operating Permits establishes requirements to limit the plant wide potential emission rates to below major source threshold levels and to provide methods of determining continued compliance with all applicable requirements.

Advance Ready Mix – Plant #5 requested a plant wide emission limit of 25 tons per year for the pollutant PM_{10} .

Regulations 5.00, 5.01, 5.20, 5.21, 5.22, and 5.23 (STAR Program) establishes requirements for environmental acceptability of toxic air contaminants (TACs) and the requirement to comply with all applicable emission standards. Advance Ready Mix – Plant #5 took the total plantwide limits of 25 tpy for criteria pollutants to be a FEDOOP STAR Exempt source.

Regulation 2.17, section 5.2, requires monitoring and record keeping to assure ongoing compliance with the terms and conditions of the permit. The owner or operator shall maintain all the required records for a minimum of 5 years and make the records readily available to the district upon request.

O-1246-18-F 5 of 17 07/31/2018

Regulation 2.17, section 7.2, requires stationary sources for which a FEDOOP is issued to submit an Annual Compliance Certification by April 15, of the following calendar year. In addition, as required by Regulation 2.17, section 5.2, the source shall submit an Annual Compliance Report to show compliance with the permit, by March 1 of the following calendar year. Compliance reports and compliance certifications shall be signed by a responsible official and shall include a certification statement per Regulation 2.17, section 3.5.

b. **Emission Unit U1** – Ready Mix Concrete Batch Plant

i. **Equipment:**

Emission Point	Description	Applicable Regulation	Basis for Applicability
E1	Cement silo (split compartment), Erie- Strayer, LPG/MG-11T (capacity: 93 tons/hr)		Regulation 1.14 establishes the requirements for the
E2	Fly ash silo (split compartment), Erie- Strayer LPG/MG -11T (capacity: 88 tons/hr)		control of fugitive particulate emissions for any source.
E3	Aggregate/sand weigh hopper [batcher] (capacity: 231 ton/hr)		Regulation 7.08 establishes
E4	Cement/Fly ash weigh hopper [batcher] (capacity: 50 ton/hr)		the requirements for PM emission from new
E5	Truck Loadout (capacity: 281 ton/hr)	7.08	processes that commences construction after September 1, 1976
E6	Aggregate/sand stockpiles; Aggregate/sand handling [delivery to ground storage pile]		
E7	Aggregate/sand handling; [front loader pile to conveyor fill hopper]		
E8	Aggregate/sand batch transfer conveyor [to truck loadout] (capacity: 231 ton/hr)		
E9	Aggregate/Sand bins (4), Erie-Strayer, LPG/MG -11T (capacity: 231 ton/hr)		
E10	Unpaved Roads & Yard Areas	1.14	
E11	Aggregate/sand bin loading conveyor [exterior](capacity: 231 ton/hr)		
E12	Aggregate/sand bin loading conveyor fill hopper [exterior] (capacity: 231 ton/hr)	7.08	

ii. Standards/Operating Limits

1) **Opacity**

- (a) Regulation 1.14, section 2.3 establishes standards for opacity.
- (b) Regulation 7.08, section 3.1.1 establishes an opacity standard of less than 20%, for processes that commenced construction after September 1, 1976

2) PM/PM_{10}

- (a) Regulation 1.14, section 2.1 establishes work practice standards to prevent particulate matter from becoming airborne beyond the work site.
- (b) Regulation 2.17, section 5.1, allows the source to set a synthetic limit below the major source threshold. Source selected a synthetic limit of 25 ton/yr of the pollutant PM_{10} to remain below the threshold limit for a criteria pollutant.
- (c) The emission standard for PM at each emission point with a process throughput of greater than 30 ton/hr is determined in accordance with Regulation 7.08, section 3.1.2 as follows:

PM lb/hr limit = 17.31 (process weight ton/hr)^{0.16}.

III. Other Requirements

- **1. Temporary Sources:** The source did not request to operate any temporary facilities.
- **2. Short Term Activities:** The source did not report any short term activities.
- 3. Emissions Trading: N/A
- **4. Alternative Operating Scenarios**: The source did not request any alternative operating scenarios.
- **5. Compliance History:** There were no notices of violation issued to this facility.

6. Calculation Methodology or Other Approved Method:

The owner or operator shall calculate emissions using emission factors and equations in this attachment unless other methods are approved in writing by the District.

Emission Unit U1: Ready Mix Concrete Batch Plant (Truck Mix)

The tables supplied throughout the calculation methodology, list AP-42 emission factors, and those factors converted to lb pollutant/yd3 concrete. This is an example calculation as follows for E1 whose emission factors are based on ton cement, converting the AP-42 emission factor to PM10/yd3 concrete.

(EF lb PM10/ton cement)*(ton cement/yd3 concrete) = (lb PM10/yd3 concrete) (0.47 lb PM10/ton cement)*(0.2455 ton cement/yd3 concrete) = (0.1154 lb PM10/yd3 concrete)

Emission Factor conversion to ton composite/yd³ concrete

Concrete composition:	lbs composite/ yd³ concrete	ton composite/ yd ³ concrete
Density	4024	2.012
Aggregate	1865	0.933
Sand	1428	0.714
Cement+Sup.	564	0.282
Water	167	0.083
Total	4024	2.012
lb cement	491	0.2455
cement Supplement		
(fly ash)	73	lbs/yard

Emission Factors for Cement silo filling (E1)

	Uncontrolled			Controlled ¹		
Criteria Pollutant	AP-42 Emission Factor (lb/ton cement)	AP-42 EF converted (lb/yd ³ concrete) ²	EF Source	AP-42 Emission Factor (lb/ton cement)	AP-42 EF converted (lb/yd ³ concrete) ²	EF Source
PM	0.73	0.1792	AP-42, 11.12-2	0.00099	0.0002	AP-42, 11.12-2
PM10	0.47	0.1154	AP-42, 11.12-2	0.00034	8.35E-05	AP-42, 11.12-2
PM2.5 ³	0.47	0.1154	See footnote 3	0.00034	8.35E-05	See footnote 3
Arsenic	1.68E-06	4.12E-07	AP-42, 11.12-8	4.24E-09	1.04E-09	AP-42, 11.12-8
Beryllium	1.79E-08	4.39E-09	AP-42, 11.12-8	4.86E-10	1.19E-10	AP-42, 11.12-8

¹ The controlled emission factors for Cadmium and total Phosphorus were calculated using the District default baghouse efficiency of 98%; controlled EF = (uncontrolled EF) * (1-0.98)

² AP-42 Emission Factors are converted to (lb pollutant/yd3 concrete) for ease in calculation.

³ In the absence of a determined PM_{2.5} emission factor, the District assumes the PM_{2.5} emission factor equals PM₁₀

	Uncontrolled			Controlled ¹		
Criteria Pollutant	AP-42 Emission Factor (lb/ton cement)	AP-42 EF converted (lb/yd ³ concrete) ²	EF Source	AP-42 Emission Factor (lb/ton cement)	AP-42 EF converted (lb/yd ³ concrete) ²	EF Source
Cadmium	2.34E-07	5.74E-08	AP-42, 11.12-8	4.68E-09	5.74E-08	AP-42, 11.12-8
Total Chromium	2.52E-07	6.19E-08	AP-42, 11.12-8	2.90E-08	7.12E-09	AP-42, 11.12-8
Lead	7.36E-07	1.81E-07	AP-42, 11.12-8	1.09E-07	2.68E-08	AP-42, 11.12-8
Manganese	2.02E-04	4.96E-05	AP-42, 11.12-8	1.17E-07	2.87E-08	AP-42, 11.12-8
Nickel	1.76E-05	4.32E-06	AP-42, 11.12-8	4.18E-08	1.03E-08	AP-42, 11.12-8
Total Phosphorus	1.18E-05	2.90E-06	AP-42, 11.12-8	2.36E-07	2.90E-06	AP-42, 11.12-8

Emission Factors for Fly ash silo filling (E2)

		Uncontrolled ⁴			Controlled		
Criteria Pollutant	AP-42 Emission Factor (lb/ton fly ash)	AP-42 EF converted (lb/yd³ concrete)	EF Source	AP-42 Emission Factor (lb/ton fly ash)	AP-42 EF converted (lb/yd3 concrete)	EF Source	
PM	3.14	0.1146	AP-42, 11.12-2	0.0089	0.0003	AP-42, 11.12-2	
PM10	1.1	0.0402	AP-42, 11.12-2	0.0049	1.79E-04	AP-42, 11.12-2	
PM2.5 ⁵	1.1	0.0402	See footnote 5	0.0049	1.79E-04	See footnote 5	
Arsenic	5.00E-05	1.83E-06	AP-42, 11.12-8	1.00E-06	3.65E-08	AP-42, 11.12-8	
Beryllium	4.52E-06	1.65E-07	AP-42, 11.12-8	9.04E-08	3.30E-09	AP-42, 11.12-8	
Cadmium	9.90E-09	3.61E-10	AP-42, 11.12-8	1.98E-10	7.23E-12	AP-42, 11.12-8	
Total Chromium	6.10E-05	2.23E-06	AP-42, 11.12-8	1.22E-06	4.45E-08	AP-42, 11.12-8	
Lead	2.60E-05	9.49E-07	AP-42, 11.12-8	5.20E-07	1.90E-08	AP-42, 11.12-8	
Manganese	1.28E-05	4.67E-07	AP-42, 11.12-8	2.56E-07	9.34E-09	AP-42, 11.12-8	
Nickel	1.14E-04	4.16E-06	AP-42, 11.12-8	2.28E-06	8.32E-08	AP-42, 11.12-8	
Total Phosphorus	1.77E-04	6.46E-06	AP-42, 11.12-8	3.54E-06	1.29E-07	AP-42, 11.12-8	
Selenium	3.62E-06	1.32E-07	AP-42, 11.12-8	7.24E-08	2.64E-09	AP-42, 11.12-8	

⁴ The uncontrolled emission factors for $\,$ fly ash silo filling (E2) were calculated using the District default baghouse efficiency of 98%; uncontrolled EF = (controlled EF)/(1-0.98)

⁵In the absence of a determined PM_{2.5} emission factor, the District assumes the PM_{2.5} emission factor equals PM₁₀

- E1 lb pollutant = (ton cement) * E1 EF (lb pollutant/ton cement)
- E1 lb pollutant = (concrete yds³) * E1 EF (lb pollutant/concrete yds³)
- E2 lb pollutant = (ton fly ash) * E2 EF (lb pollutant/ton fly ash)
- E2 lb pollutant = (concrete yds³) * E2 EF (lb pollutant/concrete yds³)

Emission Factors for E3, E6, E7, E8, E9, E11, and E12

	PM Uncontrolled		PM ₁₀ Unc		
Criteria Pollutant	AP-42 Emission Factor (lb PM/ton material)	AP-42 EF converted (lb PM/yd³ concrete)	AP-42 Emission Factor (lb PM10/ton material)1	AP-42 EF converted (lb PM10/yd ³ concrete)	EF Source
Weigh hopper (E3)	0.0048	0.0079	0.00280	0.0046	AP-42, 11.12-2
Aggregate transfer (E6, E7, E8, E9, E11, E12)	0.0069	0.0064	0.00330	0.0031	AP-42, 11.12-2
Sand transfer (E6, E7, E8, E9, E11, E12)	0.0021	0.0015	0.00099	0.0007	AP-42, 11.12-2

PM and PM₁₀ per ton material defined as follows per AP-42:

Weigh hopper material = (sand + aggregate) in tons

Aggregate transfer = aggregate in tons

Sand transfer = sand in tons

- E3 lb pollutant = (ton material) * EF (lb PM/ton material)
- E3 lb pollutant/yr = (concrete yds^3/yr) * EF (lb pollutant/concrete yds^3)
- E6 Aggregate (SCC 3-05-011-21) Delivery to ground storage pile
- E7 Aggregate (SCC 3-05-011-21) from ground storage to A/S bin loading conveyor fill hopper
- E6 Sand (SCC 3-05-011-22) Delivery to ground storage pile
- E7 Sand (SCC 3-05-011-22) from ground storage to A/S bin loading conveyor fill hopper
- E7 lb pollutant/yr = 2*[(ton sand/yr) * EF (lb pollutant/ton sand) + (ton aggregate/yr) * EF (lb pollutant/ton aggregate)]
- E7 lb pollutant/yr = 2*[(concrete yds³/yr) * EF Sand Transfer (lb pollutant/concrete yds³) + (concrete yds³/yr) * EF Aggregate Transfer (lb pollutant/concrete yds³)]
- E8 Aggregate/sand transfer conveyor (Weigh hopper conveyer to truck load out)
- E8 lb pollutant/yr = [(ton sand/yr) * EF (lb pollutant/ton sand) + (ton aggregate/yr) * EF (lb pollutant/ton aggregate)]
- E8 lb pollutant/yr = (concrete yds³/yr) * EF Sand Transfer (lb pollutant/concrete yds³) + (concrete yds³/yr) * EF Aggregate Transfer (lb pollutant/concrete yds³)
- E9 A/S transfer to weigh hopper
- E9 lb pollutant/yr = [(ton sand/yr) * EF (lb pollutant/ton sand) + (ton aggregate/yr) * EF (lb pollutant/ton aggregate)]
- E9 lb pollutant/yr = (concrete yds³/yr) * EF Sand Transfer (lb pollutant/concrete yds³) + (concrete yds³/yr) * EF Aggregate Transfer (lb pollutant/concrete yds³)

- E11 Aggregate (SCC 3-05-011-04) Transfer to elevated storage
- E11 Sand (SCC 3-05-011-05) Transfer to elevated storage
- E11 lb pollutant/yr = [(ton sand/yr) * EF (lb pollutant/ton sand) + (ton aggregate/yr) * EF (lb pollutant/ton aggregate)]
- E11 lb pollutant/yr = (concrete yds³/yr) * EF Sand Transfer (lb pollutant/concrete yds³) + (concrete yds³/yr) * EF Aggregate Transfer (lb pollutant/concrete yds³)
- E12 Aggregate (SCC 3-05-011-23) Transfer to conveyor via fill hopper
- E12 Sand (SCC 3-05-011-24) Transfer to conveyor via fill hopper
- E12 lb pollutant/yr = [(ton sand/yr) * EF (lb pollutant/ton sand) + (ton aggregate/yr) * EF (lb pollutant/ton aggregate)]
- E12 lb pollutant/yr = (concrete yds³/yr) * EF Sand Transfer (lb pollutant/concrete yds³) + (concrete yds³/yr) * EF Aggregate Transfer (lb pollutant/concrete yds³)

E4: Cement/Fly ash weigh hopper [batcher]⁶

	Uncontrolled		Controlled		
Criteria Pollutant	AP-42 Emission Factor (lb pollutant/ton cement + supplement)	AP-42 EF converted (lb pollutant/yd³ concrete)	AP-42 Emission Factor (lb pollutant/ton cement + supplement)	AP-42 EF converted (lb pollutant/yd³ concrete)	EF Source
PM	1.118	0.3153	0.098	0.0276	AP-42, 11.12-2
PM10	0.31	0.0874	0.0263	0.0074	AP-42, 11.12-2
PM2.5 ⁷	0.31	0.0874	0.0263	0.0074	See footnote 7
Arsenic	1.22E-05	3.44E-06	6.02E-07	1.70E-07	AP-42, 11.12-8
Beryllium	2.44E-07	6.88E-08	1.04E-07	2.93E-08	AP-42, 11.12-8
Cadmium	3.42E-08	9.64E-09	9.06E-09	2.55E-09	AP-42, 11.12-8
Total Chromium	1.14E-05	3.21E-06	4.10E-06	1.16E-06	AP-42, 11.12-8
Lead	3.62E-06	1.02E-06	1.53E-06	4.31E-07	AP-42, 11.12-8
Manganese	6.12E-05	1.73E-05	2.08E-05	5.87E-06	AP-42, 11.12-8
Nickel	1.19E-05	3.36E-06	4.78E-06	1.35E-06	AP-42, 11.12-8
Total Phosphorus	3.84E-05	1.08E-05	1.23E-05	3.47E-06	AP-42, 11.12-8
Selenium	2.62E-06	7.39E-07	1.13E-07	3.19E-08	AP-42, 11.12-8

E4 lb pollutant/yr = (ton cement + supplement)/yr * EF (lb pollutant/ton cement + supplement) E4 lb pollutant/yr = (concrete yds³/yr) * EF (lb pollutant/concrete yds³)

-

⁶ Without specified emission factors for cement/fly ash weigh hopper [batcher], the truck loadout (truck mix) emission factors are applied.

⁷In the absence of a determined PM_{2.5} emission factor, the District assumes the PM_{2.5} emission factor equals PM₁₀

E5: Truck loading (truck mix) (SCC 3-05-011-10)

	Uncontrolled		Controlled		
Criteria Pollutant	AP-42 Emission Factor (lb pollutant/ton cement + supplement)	AP-42 EF converted (lb pollutant/yd³ concrete)	AP-42 Emission Factor (lb pollutant/ton cement + supplement)	AP-42 EF converted (lb pollutant/yd³ concrete)	EF Source
PM	1.118	0.3153	0.098	0.0276	AP-42, 11.12-2
PM10	0.31	0.0874	0.0263	0.0074	AP-42, 11.12-2
PM2.5 ⁸	0.31	0.0874	0.0263	0.0074	See footnote 8
Arsenic	1.22E-05	3.44E-06	6.02E-07	1.70E-07	AP-42, 11.12-8
Beryllium	2.44E-07	6.88E-08	1.04E-07	2.93E-08	AP-42, 11.12-8
Cadmium	3.42E-08	9.64E-09	9.06E-09	2.55E-09	AP-42, 11.12-8
Total Chromium	1.14E-05	3.21E-06	4.10E-06	1.16E-06	AP-42, 11.12-8
Lead	3.62E-06	1.02E-06	1.53E-06	4.31E-07	AP-42, 11.12-8
Manganese	6.12E-05	1.73E-05	2.08E-05	5.87E-06	AP-42, 11.12-8
Nickel	1.19E-05	3.36E-06	4.78E-06	1.35E-06	AP-42, 11.12-8
Total Phosphorus	3.84E-05	1.08E-05	1.23E-05	3.47E-06	AP-42, 11.12-8
Selenium	2.62E-06	7.39E-07	1.13E-07	3.19E-08	AP-42, 11.12-8

E5 lb pollutant/yr = (ton cement + supplement)/yr * EF (lb pollutant/ton cement + supplement) E5 lb pollutant/yr = (concrete yds^3/yr) * EF (lb pollutant/concrete yds^3)

E13 Water Heater Emission Factors

Emission Source	Pollutant		mission Factor	Emission Factor
Zimssion source	1 onumit	Uncontrolled	Controlled	Source
	NO_X	100	100	AP-42, 1.4-1
	СО	84	84	AP-42, 1.4-1
	PM	0.52	0.52	Roy Huntley, EPA ⁹
E13	PM_{10}	.0.32	0.32	Roy Huntley, EPA ⁹
	SO_2	0.6	0.6	AP-42, 1.4-2
	VOC	5.5	5.5	AP-42, 1.4-2
	NH ₃	3.2	3.2	EPA WebFIRE

⁸ In the absence of a determined $PM_{2.5}$ emission factor, the District assumes the $PM_{2.5}$ emission factor equals PM_{10}

⁹ The revised PM emission factors are from: "EPA's Emission Inventory and Analysis Group guidance 3/30/2012".

 $E = (X) * (EF lb/10^6 scf) * (1 ton/2000 lb.)$

Where: E = emissions (tons)

X = the amount of natural gas combusted (10⁶ scf) [AP-42 EF (lb/MMBtu) converted to (lb/10⁶ scf) natural gas combusted]

E13: Water Heater Emission Factors

Emission	Individual HAP/TAC	CAS	Natural Gas Er (lb/10 ⁶ scf natural		Emission
Source	Individual II/II/I/I		Uncontrolled	Controlled	Factor Source
	2-Methylnaphthalene	91-57-6	2.40E-05	2.40E-05	AP-42, 1.4-3
	3-Methylchloranthrene	56-49-5	1.80E-06	1.80E-06	AP-42, 1.4-3
	DMBA	57-97-6	1.60E-05	1.60E-05	AP-42, 1.4-3
	Acenaphthene	83-32-9	1.80E-06	1.80E-06	AP-42, 1.4-3
	Acenaphthylene	208-96-8	1.80E-06	1.80E-06	AP-42, 1.4-3
	Anthracene	120-12-7	2.40E-06	2.40E-06	AP-42, 1.4-3
	Benz(a)anthracene	56-55-3	1.80E-06	1.80E-06	AP-42, 1.4-3
	Benzene	71-43-2	2.10E-03	2.10E-03	AP-42, 1.4-3
	Benzo(a)pyrene	50-32-8	1.20E-06	1.20E-06	AP-42, 1.4-3
	Benzo(b)fluoranthene	205-99-2	1.80E-06	1.80E-06	AP-42, 1.4-3
	Benzo(g,h,i)perylene	191-24-2	1.20E-06	1.20E-06	AP-42, 1.4-3
	Benzo(k)fluoranthene	205-82-3	1.80E-06	1.80E-06	AP-42, 1.4-3
	Chrysene	218-01-9	1.80E-06	1.80E-06	AP-42, 1.4-3
	Dibenzo(a,h)anthracene	53-70-3	1.20E-06	1.20E-06	AP-42, 1.4-3
E13	Dichlorobenzene	25321-22-6	1.20E-03	1.20E-03	AP-42, 1.4-3
E13	Fluoranthene	206-44-0	3.00E-06	3.00E-06	AP-42, 1.4-3
	Fluorene	86-73-7	2.80E-06	2.80E-06	AP-42, 1.4-3
	Formaldehyde	50-00-0	7.50E-02	7.50E-02	AP-42, 1.4-3
	Hexane	110-54-3	1.80E+00	1.80E+00	AP-42, 1.4-3
	Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	1.80E-06	AP-42, 1.4-3
	Naphthalene	91-20-3	6.10E-04	6.10E-04	AP-42, 1.4-3
	Phenanathrene	85-01-8	1.70E-05	1.70E-05	AP-42, 1.4-3
	Pyrene	129-00-0	5.00E-06	5.00E-06	AP-42, 1.4-3
	Toluene	108-88-3	3.40E-03	3.40E-03	AP-42, 1.4-3
	Arsenic	7440-38-2	2.00E-04	2.00E-04	AP-42, 1.4-4
	Beryllium	7440-41-7	1.20E-05	1.20E-05	AP-42, 1.4-4
	Cadmium	7440-43-9	1.10E-03	1.10E-03	AP-42, 1.4-4
	Chromium	7440-47-3	1.40E-03	1.40E-03	AP-42, 1.4-4
	Cobalt	7440-48-4	8.40E-05	8.40E-05	AP-42, 1.4-4
	Manganese	7439-96-5	3.80E-04	3.80E-04	AP-42, 1.4-4
	Mercury	7439-97-6	2.60E-04	2.60E-04	AP-42, 1.4-4
	Nickel	7440-02-0	2.10E-03	2.10E-03	AP-42, 1.4-4

Emission	Individual HAP/TAC	CAS	Natural Gas Emission Factor (lb/10 ⁶ scf natural gas combusted)		Emission
Source	Individual HAI/TAC	CAS	Uncontrolled	Controlled	Factor Source
	Selenium	7782-49-2	2.40E-05	2.40E-05	AP-42, 1.4-4

 $E_{(HAP)} = (X) (EF lb/10^6 scf) (1 ton/2000 lb.)$

Where: $E_{(HAP)}$ = emissions (tons) X = the amount of natural gas combusted (10^6 scf) [AP-42 EF (lb/MMBtu) converted to (lb/ 10^6 scf) natural gas combusted]

E14 and E15: Emission Factors for Tank and totes

Emission Source	Pollutant	Emission Factor (lb/gallon)	Emission Factor Source
E14 Admixture totes: No more than 7 totes, with a maximum of 2500 gallons.	VOC	N/A	Emissions accounted for in the working losses for the storage tanks below using AP-42 evaporative losses.
E15 Diesel Storage tank 10,000 gallons	VOC	N/A	Emissions accounted for in the working losses for the storage tanks below using AP-42 evaporative losses.

7. Insignificant Activities

Equipment	Quantity	PTE (tpy)	Basis for Exemption
E13 Water heater, Power Flame Burner, CR2-G-20B, natural gas indirect fired heat exchanger 2.8 MMBtu/hr, Pearson P-15-15W, Scotch Firebox	1	1.20 NOx	Regulation 1.02, Appendix A
E14-A Chemical Admixtures totes Master Glenium 7511 (850 gallons)	1		
E14-B Chemical admixture tote Master Pozzolith 700N (850 gallons)	1		
E14-C Chemical admixture tote Master Air AE 200 (500 gallons)	1	2.505.05	Dec letter 100
E14-D Chemical admixture tote Master Set Delvo (500 gallons)	1	3.50E-05 VOC	Regulation 1.02, Appendix A
E14-E Chemical admixture tote Master Matrix VMA 362 (362 gallons)	1		
E14-F Chemical admixture tote Master Set AC 122 (2500 gallons)	1		
E14-G Chemical admixture tote Master Set AC 534 (2500 gallons)	1		
E15 Diesel Fuel storage tank, 10,000 gal	1	0.0744 VOC	Regulation 1.02, Appendix A

- 1) Insignificant activities identified in District Regulation 1.02, Appendix A, may be subject to size or production rate disclosure requirements.
- 2) Insignificant activities identified in District Regulation 1.02, Appendix A shall comply with generally applicable requirements.
- 3) The owner or operator shall annually submit an updated list of insignificant activities that occurred during the preceding year, with the compliance certification due April 15th.
- 4) Emissions from Insignificant Activities shall be reported in conjunction with the reporting of annual emissions of the facility as required by the District.
- 5) The owner or operator may elect to monitor actual throughputs for each of the insignificant activities and calculate actual annual emissions, or use Potential to Emit (PTE) as the annual emissions for each piece of equipment.

The District has determined that no monitoring, record keeping, or reporting requirements apply to the insignificant activities listed, except for the equipment that has an applicable regulation and permitted under an insignificant activity (IA) unit.

8. Basis of Regulation Applicability for IA units

a. **Emission Unit IA1** – Storage Tanks

i. **Equipment**

Emission Point	Description	Applicable Regulation	Basis for Applicability
E14-A	Chemical admixture tote Master Glenium 7511 (850 gallons)		Regulation 7.12 establishes the requirements for new storage vessels for VOC
E14-B	Chemical admixture tote Master Pozzolith 700N (850 gallons)		compounds that commenced construction or modification on or after April 19, 1972.
E14-C	Chemical admixture tote Master Air AE 200 (500 gallons)		
E14-D	Chemical admixture tote Master Set Delvo (500 gallons)		
E14-E	Chemical admixture tote Master Matrix VMA 362 (362 gallons)	7.12	
E14-F	Chemical admixture tote Master Set AC 122 (2500 gallons)		
E14-G	Chemical admixture tote Master Set AC 534 (2500 gallons)		
E15	Diesel Fuel Storage tank (10,000 gallons)		

ii. Standards/Operating Limits

1) **VOC**

(a) Regulation 7.12, section 3.3 establishes equipment standards for VOC storage vessels

b. **Emission Unit IA2** – Water Heater

i. **Equipment**

Emission Point	Description	Applicable Regulation	Basis for Applicability
E13	Indirect fired heat exchanger - water heater, Power Flame	7.06	Regulation 7.06 establishes the

Emission Point	Description	Applicable Regulation	Basis for Applicability
	Burner, CR2-G-20B, natural gas 2.8 MMBtu/hr, Pearson P-15-15W, Scotch Firebox		requirements for indirect heat exchanger having input capacity of more than one million BTU per hour commenced after September 1, 1976

ii. Standards/Operating Limits

1) **Opacity**

(a) Regulation 7.06, section 4.2 establishes opacity standards for the boilers.

2) **PM**

(a) Indirect water heater, the 2.8 MMBtu/hr (boiler), installed in 1997, is subject to Regulation 7.06. The emission standard for PM is determined in accordance with Regulation 7.06, section 4.1.1 as follows:

Total Heat Input Capacity = 2.8 MMBtu/hr PM limit = 0.56 lb/MMBtu

3) **SO**₂

(a) Indirect water heater, the 2.8 MMBtu/hr (boiler), installed in 1997, is subject to Regulation 7.06. The emission standard for SO₂ is determined in accordance with Regulation 7.06, section 5.1.1 as follows:

Total Heat Input Capacity = 2.8 MMBtu/hr $SO_2 \text{ limit} = 1.0 \text{ lb/MMBtu}$